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Abstract. In this letter, we present the replica symmetric solution of the graph bipartitioning 
problem. We point out the possibility of many solutions, even with the replica symmetry 
assumption. We also comment on the possibility of constructing a model with an arbitrary 
finite number of transition temperatures. 

Recently, there has been much interest in applying techniques of the statistical 
mechanics of random systems to hard optimisation problems. Generally, these prob- 
lems can be mapped onto certain spin Hamiltonians. Then the quantity to be optimised, 
hereafter referred to as the cost function, is related to the ground-state energy of the 
corresponding spin Hamiltonian. 

In a recent paper, Fu and Anderson [ l ]  solved the graph bipartitioning problem 
with N-independent bond probability (P = O(1)) distribution. They showed that it is 
equivalent to the SK spin glass. By considering local field distribution, Kanter and 
Sompolinsky [ 2 ]  found the replica symmetry solution of the graph bipartitioning 
problem with bond probability distribution scaled as a/ N, where a is a finite number. 
Using the cavity field method, MCzard and Parisi [3] had obtained the same results. 
In this letter, we point out the possibility of the existence of many solutions, even with 
the replica symmetry assumption. We also work out the most naive replica symmetry 
breaking scheme. Unfortunately, we have not been able to find a replica symmetry 
breaking scheme that works. 

The problem that we consider is the following. We are given a set of vertices 
V = ( VI,  V,, . . . , V N ) ,  with N even, and a set of edges E = {( V,, y ) } .  Let each edge 
be present with probability P. The bipartitioning problem is to divide V into two parts 
of equal size, in such a way as to minimise the number of edges Nc connecting these 
two parts. Nc is thus our cost function. We are then interested in the behaviour of 
Nc/ N, in the limit N + CO, as a function of a = NP. 

As pointed out in [l] ,  it is easily seen that 

with constraint 
N 

si=o 
i = l  

(3) 
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where (. . .)," means the average over the bond probability distribution. Hence, to 
minimise ( Nc),v is to find the ground-state energy of the Hamiltonian in equation ( 2 ) ,  
subject to the constraint of equation (3). Using the replica method: 

( Z m ) a v -  1 (In Z),, = lim 
m-0 m (4) 

( 5 )  

Similar to the derivation presented in [ 1,6], we have 

(Z"),,= Tr . . . Tr 
s;m=o z;:, S?'=O 

It is easy to see that J must be scaled as Jo/dNP, with Jo some finite number, in 
order for the free energy to be extensive. This is true for any P as a function of N. 
Hence we see that as long as limN+m NP = a -, 00, we only have to keep the first term, 
namely l = 2 .  We then recover Fu and Anderson's result. If we are interested in the 
case l imN+m P - ,  0 and limN+m a <a, we see that 

In that case, we have 

Af = tanh'( P J )  cosh"( P J ) .  ( 1 1 )  

We now replace the constraint in equation (3) by the penalty term 

with A + 00. Then after Gaussian transformation (or Hubbard-Stratonovich transfor- 
mation), the constraints means (Sa) = 0. Under the replica symmetry assumption, the 
saddle-point approximation gives 

N 1  
( lnZ) , ,=&Nlncosh(pJ)+max m - O m  lim-[ -- 21-2 f (Y)aA'Q:  

m 

aAfQf C S u i  . . S a l ) ] .  
a l e  ... '01 

The saddle-point condition is 
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(15) 

and the value of a, PJ,  

So we see that in the replica symmetry assumption, as long as limD+m, gkpJ + 00, we have 

lim Q2, = Q lim = R 
P+00 P+00 

for all 1 = 1,2,3, . . , . But our constraint says Q1 = (S") = 0. Therefore all odd-spin 
order parameters are zero at T = 0. Using 

we get 

Q = 1 -exp(-aQ)lo(aQ) (19) 

iim N , / N  = 4 a ( 2 ~ -  Q') -&Q exp(-aQ)[~,(aQ)+ I l (aQ)] .  (20) 

Results of equation (19) and (20) were derived in [2,3] using a different method. 
However, we notice that equation (17) only says that, as T+O, all even-spin order 
parameters reach the same value. If we assume 

N - c a  

lim Qzl = 
P+00 tanh2'( P J )  

where O s  a s 1, then we arrive at a different saddle-point equation and cost function. 
The p + m limit in equation (21) has to be carefully interpreted. As it stands, it means 
that we have to know how the even-spin order parameters reach the common value 
as p +CO. MCzard and Parisi [3] have reached the same conclusion, that it might be 
necessary to know how the saddle point evolves as T + 0. 

The motivation for introducing equation (21) is more clearly illustrated by consider- 
ing local field distribution, in the replica symmetry assumption, as defined by 

oc 

Q k  = (sal . . . S a , )  = P( h )  tanhk( P h )  dh. (22) 
-X 

The assertion in equation (17) means that at T = 0, as derived in [2], 
cc 

P ( h ) = P , 6 ( h ) +  f P : 6 ( h - U ) +  1 P ; S ( h + N )  (23) 
I = 1  I = 1  

X X 

Q =  P:+ P; 
1 = 1  I = l  

(T X 

R =  P t -  1 P;. 
I = 1  I =  1 
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However, it is not certain that P( h )  has a continuous part at T = 0. This point has 
also been raised in [3]. The ansatz in equation (21) amounts to introducing S ( h  f aJ), 
with Os a s 1 ,  in the local field distribution function P ( h ) .  Indeed, in the letter by 
Mottishaw and De Dominicis [4], they have concluded that an extra term is needed 
in the local field distribution to restore the stability, even in the replica symmetric 
subspace. We believe that the extra term they introduced is closely related to our 
ansatz in equation (21). 

According to an exact result by Erdos and Renyi [ 5 ] ,  and pointed out by Fu and 
Anderson [l], limn+a N,/  N = 0 for a s 2 In 2 and limN+OO N , /  N > 0 for a > 2 In 2. 
Equation (20) gives limN+m N, /  N > 0 for a > 1 and limN+OO N,/  N = 0 for a s 1 .  We 
have tried a variation of the type shown in equation (21). We found that 

lim N c /  N = &[2( Q+ Q')+2( Q+ Q')Q'a + a  - a (  Q'+ 1) ,  - ( Q +  Q'),] 
N +m 

We then have to find the saddle point for this expression. We notice that the cost per 
site is not analytic as a function of a. We do not fully understand its significance at 
this moment. We found that for all (r 2 1 ,  a = 4 gives the lowest cost function (consider- 
ably less than that in equation (20)). The percolation threshold is still at a = 1 .  
However, we still have a cost function greater than 0 for a 3 1 ,  with nothing special 
happening at a = 2 In 2. 

Another possibility is replica symmetry breaking. Viana and Bray [6] had shown 
that replica symmetry must be broken near T,, by including the first few order 
parameters. However, it is not clear whether replica symmetry$ still broken at T = 0. 
It might be possible that, due to the emergence of infinitely many order parameters, 
replica symmetry is restored. In any case, we have considered the following replica 
symmetry breaking scheme. Following the logic leading to equation (16), we see that 
for any scheme of breaking m replicas into groups, what matters is whether the number 
of replica indices in each group is even or odd. (This is true only at T=O.) As a 
naive attempt, let us break m replicas into two equal groups, GI and G,. For 
1 = 1,2 ,3 , .  . . (we have set Q1 = (Sa) = 0), let 

iff all a,,. . . , a2f+1 E GI (or G,) 

otherwise 

tanh2'+'(PJb) 
tanh2'+I( P J )  

(27) - - lim Qa I , . . . ,  a2,+, 
B+m 

and 

tanh2'( PJa) iff odd number of a,, . . . , aZI E G, and 
odd number of a l ,  . . . , a2' E G2 

lim Qu ,...., u2, - - [:+" tanh2'(pJ) (28) 
otherwise. 

Equation (27) guarantees that the constraint Q2'+, = 0 at T = 0 is satisfied. ( Q1 = 0 
for all T, but Q 2 1 + , ,  for 1 = 1,2, . . . , need not be 0 for T # 0.) We have computed the 
ground-state energy under the assumption of equations (27) and (28). Interestingly, 
the ground-state energy does not depend on Q' or a. However, we recover the same 
saddle point as given in equations (19) and (20). Other replica symmetry breaking 
schemes are under consideration. 
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Finally, we would like to comment on the possibility of constructing a model with 
an arbitrary finite number of transition temperatures. In the course of studying this 
problem, we have noticed that, if we just keep the first few finite number of terms in 
equation (6), we might have a model with a finite number of transition temperatures. 
We also demonstrated that, if there is a bond probability distribution producing a 
finite number of terms in the replicated Hamiltonian, then there is no percolation in 
the problem, in the sense that all order parameters, with the replica symmetry assump- 
tion, approach 1 as T-, 0, regardless of the variation of any other parameters in the 
Hamiltonian. Let us consider the following specific example. Can we find a bond 
probability distribution P ( J )  such that, for instance, 

for some coefficients a, b, c, with c > O ?  It is easy to see that 

exp(uS2+bS4+cS6)= exp(-itx-at2+bt4-ct6) dt  

Then by Bochner's theorem, 

exp( -itx - at2 + bt4 - ct6) d t  (31) 

will be a probability distribution iff exp(-at2+ bt4- ct6)  is positive definite [7]. When 
c < 0, no bond probability distribution will produce such a replicated Hamiltonian. 
This is true for all cases with leading power in S even and the corresponding coefficient 
negative. If the leading power in S is odd, we again have to prove positive definiteness 
of a certain function. However, in general it is very hard to prove that a function is 
positive definite. The Gaussian case is an exception. This fact is the reason why it is 
relatively easy for the SK model to be constructed. Indeed, De Dominicis and Mottishaw 
[8] had considered a toy model with the replicated Hamiltonian 

However, there is no bond probability distribution that would correspond to their 
interesting conclusion, which happens only when p is negative enough [8]. 

I would like to thank P W Anderson, G Baskaran and B Doucot for very useful 
conversations. This work was supported in part by NSF grant no DMR 8518163. 
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